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Abstract

Earlier papers by Murty [16] and Fathi (7] have exhibi ted

classes of l inear complementarity problem s for wh ich the computational

effort (number of pi vo t steps ) requi red to solve them by Lenke ’s

algori thm [13] or Murty ’s algorithm [15] grows exponentially with the

problem size (number of variables). In this paper we consider the

sequences of complementary bases that arise as these problems are

solved by the aforementioned algori thms. There is a natural correspond-

ence between these bases and bi nary n-vectors through which the basis

sequences can be identified wi th particular hami l tonian paths on the

unit n-cube and with the binary Gray code representations of the

integers from 0 to 2n -
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.1 OBSERVATIONS ON A CLASS OF NASTY

LINEAR COMPLEMENTARITY PROBLEMS

• by

Richard W. Cottle

1. Introduction.

From the theoretical standpoint , the “complementary pivot methods”

of Lemke [13], Murty [15), and DantzIg-Cottle [5], will always solve

the nondegenerate linear compl ementarity probl em (q, N) of order n

find w and z satisfying

Iw — Mz = q

w > O , z > O
Tz w = O

when H E RflXfl is a P—matrix and q ~ R~ is arbitrary. Empirically

it has been found that these methods work quite efficiently, often solv-

ing the probl em by roughly 0(n) pivots. Encouraging though this nay

be, it need not always be the case. Indeed, Murty [16] and Fathi [7]

have each exhibited classes of linear compl ementarity probl ems (indexed

by the order, n ) requiring either 2n or - 1 pivots depending

on which of two compl ementary pivot methods Is used to obtain the solution.

These contributions to the subject of computational complexity of

algorithms deal with specific numerical probl ems (q, M) . In Murty’s

paper , M is a l ower triangular P—matrix with positive entries below

the main diagonal , and hence it is necessarily nonsymmetric. In Fathi ’s

paper, M is symmetric, positive definite and positive. As such, these
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matrices (to be specified more precisely in Section 4) look rather nice H
insofar as the constructive existence theory is concerned.

The primary purpose of this paper is to point out that there is

something quite special about the sequences of bases through which the

algorithm s run when appl ied to the numerical examples of Murty and Fathi.

A secondary purpose of the paper is to characterize the subclass of P—

matrices and vectors q for which a particular pivoting sequence is

followed . The necessary and sufficient conditions given here are ex-

pressed in terms of determi nantal inequalities ; other equivalent formu-

lations are possible.

The plan of the paper is the following. In Section 2, we intro-

duce some notation and background especially rel evant to the main point.

In Section 3, we explore some properties of a particular function related

to the special pivot sequence arising in the Murty-Fathi examples. In

Section 4 we analyze the aforementioned exampl es and show that they do

indeed give rise to the pivot sequence we have in mind. In Section 5,

we establish the relationship between the data and the pivot sequence

followed by the compl ementary pivot methods of Lemke and Murty. Finally,

in Section 6, we mention some interesting related literature.
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2. Notation and background.

For the sake of brevity, we omit most of the customary prel iminary

material and refer the reader to Murty [16] and Fathi [7] for the stan-

dard concepts and notations of linear complementarity theory. To some

extent, we rely on these papers for accounts of the “complementary pivot

methods” to be discussed here.

However, there is one Item so es~entia1 to our development that it

must be reviewed. Obviously, the equation

I w - M z = q  ( 1)

is central to the study of (q, I~1) . One Is Interested in complementary

bases in the matrix [I, —M] . These are nonsingular matrices

H B = [B 1, •.., B.n] such that

B~ E (I~~ —M J
} , = 1 , ..., n , (2)

i.e., the j—th column of B is either the j—th col umn of I or the

j-th column of -M . Such matrices give rise to compl ementary basic

solutions of (1). A nonnegative compl ementary basic solution of (1)

solves (q, N)

Given a compl ementary basis B , the set

p o s B = { q : q = B v , v > O }

is called the compl ementary cone relative to B

Again , suppose a complementary basis B is given. To this basis

—3—

I
_____ 

_____

- 

-



we associate a bi nary row vector c E R~ as follows. For

j = 1, ... , n let

0 if B . = I .
c. = ‘3 ~J (3)

1 if B~~~= _ M ~~~.

When N E P (the class of matrices with positive princip al minors),

we must have I~~ $ —M~ , so there is absolutely no ambiguity in de-

fining c~ as in (3). In other cases, one could use the definition

0 if B . = [I, —M]
= (3 ’)

1 if B~ = [I, _rl] n+j

According to (3), the vector corresponding to the identity matrix I

~~~ ~~~~, ..., 0) E Rn

As is wel l known , there are 2~ bi nary vectors in Rn , and when

N E P (or, more generally, when M is nondegenerate) there are

compl ementary bases (counting mu ltiplicities , if necessary). It is also

wel l known that binary n—vectors can be used as a way of representing the

decimal integers from 0 to 2~~l . The binary -- i.e., base—2 ——
representation comes to mind immediately. One could , therefore, use the

set of all bi nary n-vectors appropriately ordered as a way of counting

from 0 to 2n_1 , and by the correspondence (3) one could use the

compl ementary bases in [I, —M] for this purpose. Taking the latter

scheme an d , in turn , its association with compl ementary pivot methods

into account , one wants consecutive integers to be represented by

-4- 
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• algori thmically adjacent bases. From the standpoint of the methods

under consideration here, this means the compl ementary bases representing

consecutive integers should differ by exactly one column - or, equiva-

lently, that their binary representations c should differ in exactly

one component. This being so, the process of counting from 0 to

2~-l with base—2 vectors cannot correspond to an execution of either

of these compl ementary pivot methods. For exampl e, the base-2 repre-

sentations of 2n—l 1 and 2n—l differ in all n components.

The feature of adjacent compl ementary bases we wish to capture

with bi nary n—vectors is called the “unit distance property”, a term

used in coding theory and switching theory. See [1]. One code having

the unit distance property is known as Gray code - after F. Gray [11] —
also known as the refl ected binary code.

Gray code can be described in various ways . For exampl e, given

the integer

v E (0, 1, ... ,

one can first write down its base—2 representation*

nb ( v)  = (b1, ... , bn) (4)

where

v =  E b 2 ”~ . (5)
j=l

*At’this point , our notation is somewhat unconventional , but It serves
our purpose well.

—5—
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F Then the Gray code representation for v is the binary n—vector

gn(v) = (g1, ‘ ‘

ri
whose components satisfy the relations

(6)
g1 

= b1 + b1_ 1 (mod 2) , i = 2, .. ., n

Table 1 below contrasts the base-2 and Gray codes for n = 3 . (The

last column of the Table will be discussed a little later.)

V Base-2 Code b3(v) Gray Code g3(v) k3(v)

0 (0, 0, 0) (0, 0, 0) 3
1 (0 , 0, 1) (0, 0, 1) 2
2 (0 , 1, 0) (0, 1, 1) 3

3 (0 , 1, 1) (0 , 1, 0) 1
4 (1, 0, 0) (1 , 1 , 0) 3
5 (1, 0, 1) (1, 1 , 1) 2
6 (1, 1 , 0) (1, 0, 1) 3
7 (1, 1 , 1) (1, 0, 0) —

Table 1.

The Gray code representation of the integers 0, 1 , ... , 7 as binary

3—vectors illustrates two general properties:

-6-
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gn(v) = (0, g
n_l

(V)) = o, 1 , •
~~

n n— i n n— l n—l ng (v) = (1, g (2 —l—v)) , v = 2 , 2 +1, •.., 2 —l

In the case n = 3 , we can depict the sequence gn(v) as a

hami l tonian 
~~~ 

on the unit cube in R3

6/~~~~/
__2

7 / 

3

H l~~~~~~~

Figure 1.
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Another feature of the sequence g3(v) Illustrated in Tabl e 1

is that every second 3-vector is obtained from its predecessor by chang-

ing the third (i.e., last) component. Again , this feature is true in

general .

Our reason for devoting so much attention to the Gray code is to

provide some background for the followi ng assertion which is in fact the

central point of the paper: The compl ementary bases which arise in the

numerical examples of Murty and Fathi correspond (via (3)) to countin9

in Gray code from 0 to

After proving this assertion , we consider in Section 5 the general

question of what conditions on the data must be ful filled to make the

two compl ementary pivot methods follow a specifi ed pivot sequence. Once

this is done, the results of Section 4 prove the existence of data for

which these conditions are satisfied relative to the specific pivot se-

quence spelled out there.

To facilitate the work of Section 4, we explore in Section 3 some

properties of a function kn: {O, 1 , •.., 2fl _ 2 }  (1 , 2, ... , n}

Definition. For all decimal integers v satisfying 0 < ~ < 2”—2 ,

let k n(V) denote the index of the one component in which gn(v) and

gn (v+l ) differ.

Thus , using the abbreviation k = kn(v) we have

-8-
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+ g~(v + 1) = 1

g~(v) + g~(v + 1) 0 (mod 2), j  $ k

In terms of compl ementary bases, the knowledge of kn tells us for

each v = 0, 1 , ..., 2n_2 which column of a given basis is the next to

be changed .

It is very easy to verify that for n = 2 we have

v 0 1 2

k2(v) 2 1 2

Table 2.

The function k3 has already been displ ayed in Table 1. Notice that the

corresponding sequences

k2: 2, 1 , 2

k3: 3, 2, 3, 1 , 3, 2, 3

are palindromes.

-9-



1w
p

3. Properties of the function

A comparison of k3 with k2 shows an interesting recursive

property o kn

Proposition 1. For all n > 3 and 0 < v <

H n if V 2jJ

k (v) (8)
k~_1 (~) if v 2 ~j+ l .

Proof. Let bn(V) = (b~(V), ... , b~(v)) and 9
n(~) = (g~(~) 

~ fl
(
~~))

be the base-2 and Gray code representations of v , respectively. There

are obviously two cases to be considered .

Case 1. V = 2u (i.e., v is even). This case is trivial since

b~(v) = 0 if and only If v is even. It fol l ows that b~ (V + 1) = 1

and b~(~) = b~(v + 1) for j = 1, ..., n—l . Hence by (6),

g~~(V) = g~~(V + 1) for j = 1 , ..., n— l and g
’1
(v) ~ g~~(v + 1)

Thi s means k~(v) = n

Case 2. v = 2ii + 1 (i.e., V Is odd). We have b~(v) 
= 1 and

b~(v + 1 ) = 0 . Moreover,

b~_ 1 (V + 1) = b~~1(V) + 1 (mod 2)

By definition ,

g~~(V) = b~ (v) + b~~ 1(v) = 1 + b~~ 1(V) (mod 2)

and

-10-
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+ 1) = b~(v + 1) + b~_1 (v + 1) = 0 + b~_1 (v) + 1 (mod 2)

I{ence g~(v) 
= g~(v + 1) whIch Implies k~(~) < n

Since

n
v = 2~ + 1 = ~ b~(~)2

n_i and b’~(v) = 1
J=i ~‘ n

we have

n—i
v — 1 = 2~i = E b!~(v)2

’
~~j=l ‘

~

whence

= 

n—i 
b~(V)2

n_l_ J

• j=l ~

• which means

b~~~(~) = (b~~~(M), ..., b~~~(~)) = (b~(v), ... , b~~1 (v)) .

On the other hand

v + ~ = 2(u + 1) = E bn(V +
.1=1

p
so

~ + 1 = E b’~(v +
J=l

— 11—
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whi ch means

b
n_l

(U + 1) = (b~~~(v + 1), ..., ~~~~ + 1))

= (b~(v + 1), ..., b~ ,1(V + 1)) .

Now

gn(v) = (b~(v), b~(v) + b~ (V ) ,  ..., b~(v) + b~~ 1
(V )) (mod 2)

g~(v+l) = (b~(v+l), b~ (V+l ) + b~(v+1), ..., b~(v+l ) + b~_1 (v+l))

(nod 2)

whereas

g
n_l
(~j )  = (b~ (V ),  b~ (V )  + b~(v), ..., b~ _ 1 (V)  + b~_2(v)) (mo d 2)

9
n_l
(~~1) = (b~(V+1), b~(V+1) + b~(v +i), ..., b~~1 (v+l) + b~_2(v+l))

(mod 2)

It is now clear that k (v) = k 1 (p) . 0

There Is no probl em about evaluati ng kn(V) when “ is even.

For odd values of V we can descr ibe the kn(v) as follows.

—12—
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Proposition 2. ~f n > 2 and 0 < v < — 2 is an odd number , then

kn
(V )= n _ t

where t Is smalles t pos itive integer such that

v - (2~ - 1) = 2tpt ‘ 
~t 

even.

Proof. The assertion is trivial when n = 2 and v = 1 . Suppose

n > 3 , and write v = + 1 • If Is even, the asser tion is true

with t = 1 by Proposition 1. If is odd then 
~l 

= + 1 and

V = 22~2 + (22 — 1) If 
~2 

is even, we have

kn(V) 
= k l (1~

Il
) = k = n — 2

So t = 2 . If 
~2 

is odd, the process can be repeated until we reach

an expression of the form

v = 2tpt + (2t - 1)

for which is even and minimal . In this case we have by repeated

application of ProposItion 1

k~(v) = kn....i (~i1
) = kn 2 (~2

) = = k
~_t

(ut) = n — t

and this Is the assertion. 0

—l 3- 
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There is a fast way to build up kn from its predecessor k~~1

PropositIon 3. For all n > 3

kn i (v) + 1 if 0 < v ,n-l 
- 2 (9)

k~(v) = 1 if v = 2~~
1 

— 1 (10)

kn i (V — 2
n_l
) + ~ if 2n— l < ~ < 2n — 2 . (11)

Moreover ,

k ( V )  = k(v - 2n~l) if 2n-l < V 2n -2 (12)

and

k~(2
n_l - 1 — V )  = kn(2

n_l 
— 1 + V) if 0 < V 2n—l — 1 . (13)

Proof. All these claims are easily checked when n = 3 . Assume, in-

ductively, the statements are true for all in such that 3 < m n — 1

First, suppose 0 < V < 2~~
l 

— 2 . All such ‘~ belong to the do—

main of k~~1 . If v is even , then of course

k~(v) = n = (n - 1) + 1 = kn l (V) + 1

If v is odd , there exists an integer t as In Proposition 2 such that

kn(V) n - t = (n-l-t) + 1 = k~_1 (v) + 1

— 1 4—
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This proves (9).

Now let v = 2n-l - 1 . Then V = 2~i + 1 where = ~n-2 -

It follows from Propos ition 2 that

. 1  kn(2
n_l — 1) = n — (n — 1) = 1

which proves (10).

Next, suppose 2n-1 < v < 22 - 2 . For al l such numbers, we can

write

= 2n-l + ~ where 0 < v < 2l
~

I 
- 2

ThIs means ~ belongs to the domain of kn_ i . If ‘v is even, we have

kn(v) 
= n . But in this case 

—

~ 
= v — 2n—l is al so even, whence

kn_i () = n — 1 . This proves (11) for all even v . If ‘v is odd,

we may write v = 2u + 1 where 2~~
2 < < en-i - 2 . Accordingly, we

have

= 2’~
”
~ + j where o <~~~~~ < 2n-2 - 2

By Proposition 1

k~(v) = k 1(~A)

kn(~
) = k 1G~

)

and by Induction ,

—15—-
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F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —11

~~~~~ 
= k~~1(~)

Putting these three equations together we get (12). Using (12) and

Induction on (11) we get

k~(v) = k(~) = kn i (~
) + 1 = k,~ 1 (v - 2

n_1
) + 1

which gives (11) for n

Finally, equation (13) asserts that

kn
(O)
~ 

kn
(l)
~ 
..., kn(2

n 
— 3), kn(2

n 
— 2) (14)

is a palindrome. This has already been seen for n = 2 (and n = 3 )

and since each sequence (14) is obtained from its predecessor

kn_i (O)~ 
kn_i (1)~ ~~~~~~~ 

kn_i (2
~~

1 
- 3), kn i (2~~

1 
- 2)

by putting the number n at the beginning and end of the sequence as

wel l as between every consecutive pair of Its terms , it follows (by

induction) that (14) is indeed a pal Indrome. 0

-16-
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4. Appl ication to specifi c numerical examples.

In this section we aim to prove that solving the specIfic linea r

complementarity probl ems of Murty and Fathi by the complementary pivot

methods of Lenke and Murty (called complementary pivot methods I and II,

respectively) gives rise to a special pivot sequence, namely the one

corresponding to the function k~ studied in Section 3.

4.1 Murty ’s examples.

To exhibi t exponential computational requirements with complemen-

tary pivot method I, Murty def ines q = q (n) and M = M(n) as follows :

0 if i < j
n

q4 (n) = — ~ 2~ m4 4 (n) = 1 if i = j (15)
j=n+1— i

2 if i > j

Remark 1. For all n > 2 , the matrix M(n) is lower triangular and has

a positive diagonal . It is therefore trivial to veri fy that M(n) E P

A signifi cant fact about probl ems of this sort is that there is a natural

(greedy) way to solve (q, M) for any q . For I = 1 , ..., n sequen-

tially define

= max {O, -(q1 + E mijzj)/mij} . (16)

The solution to (q, M) Is then q + Mz, z . For all of the problems

(q(n), M(n)) given by (15), it Is imediate that = and

Z
i 

= 0 i = 2, ... , n

—17—
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Remark 2. According to the definition (15)

H q~(n) = ~2n+l - 2) = 2(2 n 
- 1)

This fact comes into pl ay later on.

Remark 3. Murty solves (q(3), M( 3)) where

- 8  1 0 0

q(3) = — 12 M(3) = 2 1 0

-14 2 2 1

in compl ete detail by compl ementary pivot method I. After modifying

this algorithm to its equivalent parametric (principal pivoting) form

(see [15], [7), [13]) one can see that the binary representations

(via (3)) of the 8 = 2~ bases visited are precisely the Gray code

representations of the numbers 0 1 , ... , 7 . One can also see that

the pivot sequence is k3 , that is 3, 2, 3, 1 , 3, 2, 3 . Analogous

statements for (q(2), M(2)) are even eas ier to check , and in this

case one can draw a figure which nicely illustrates the solution process.

Our goal now is to generalize the observations made in Remark 3

to (q(n), M(n)) for all n > 3 . Formally, we have

Theorem 1. The parametric form of compl ementary pivot method I appl ied

to (q(n), M(n)) as defined in (15) will generate the pivot sequence

kn (O)~ k~(1)~ ..., kn(2
n 

— 2)

Proof. The assertion is true for n = 2 (as well as n = 3 ). Assume

-18-
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It Is true for n - 1 > 2 and cons ider the problem (q (n) , M(n))
An additional , easily-proved fact is that when n = 2 , the cri-

tica l values of z0 are zg = 0 z~ = 2 z~ = 4 • and z~ = 6

In other words , z~ = 2v . (The same can be shown when n = 3 .)

We adopt this as another part of the inductive hypothesis.

‘1 For (q (n) , M(n)) let 
~ 

2n+l - 2 = 2(2n - 1) . Then define

E l e(n) = (1, ... , 1) T E R’~

and

= q (n) + ~~e(n)

It is very easy to verify that

2n _ 2
• 

~(n) = (17)
~q(n—l)

The task is now to sol ve (~(n)—z0e(n), M(n)) for all z0 E [0, i,~]
To do this, we write

[0, 2I1~~_2] = [0, 2n_2] ~J (2
n 2, 2n) U [2fl 2fl+1_2]

Now obviously for all E [0, 2n_2] we must have z1 
= 0 in

the sol ution of (~(n)—z0e(n), M(n)) . Looking at the structure of

1 0

• 2e(n—l ) M(n—l )

H _ 
--- 

-19- 
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and taking note of (17), we see that for 20 
E [0, 2”—2] we must be

solving (q(n—l), M(n—1) by the same method. By the inductive hypo-

thesis we obtain the pivot sequence kn_1 (v) for v = 0, 1 , ~~~~~~~ 2n—1 — 2

For (q (n) , M(n)) , this (partial ) pivot sequence translates by (9) into

k (v) = k
1

(V) + 1 for v = 0, 1, ..., 2n— 1 — 2

Next we note that for all z0 
E E2 n_ 

—2, 2n_2] the solution of

(~(n)—z0e(n), M( n )) must have z1 > 0 and w1 
= 0 . (See Remark 1.)

By making z1 basic in place of w1 , we have a pivot sequence which

agrees with kn up to v 2~~
1 

- 1 . For, by (10) k~(2’~~_1) = 1

Thus ,

gn(2
n_l
) = (1, 1 , 0, ..., 0)

2’~~corresponds to the compl ementary basis B . This is the compl emen-

tary basis for (~(n)—z0e(n) , M(n)) for al l z0 E ~2
n—l _2, 2n)

We now want to so l ve the problem for z0 E [2
fl 2n+l_21 . Since

z1 > 0 and w1 
= q1 (n) — 20 + 21 = 0 when z0 is in this interval ,

we have

2
1 

= 20 — (?‘~ — 2) (18)

and substituting for z1 via (18), the values of w2, ... , wn~ 
z2,

~~~ 
Z must solve

(~(n—l ) + 2(z0
_2n+2)e(n_ l) — z0e(n—l ), M(n— l))

-20-
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for all E [2~ 2n+l...2] . This can be written as

(~ (n—1 ) + 2e(n—l) — (2”~~ 2—z0)e(n— 1), N(n—1)) . (19)

Notice that for z0 
E ~2

fl 2n+l_2] we have

— 2 (2n+l — 2 - z0) > 0

So (19) is just

(~(n— l) + 2e(n—l) — ze(n—l), M(n— l)) , 2” — 2 > > 0 . (20)

In solving (20), we get the same sequence of complementary bases as

in solving (~(n—l ) — z0e(n—1), M(n— l)) for ~ ~c , 2n_21 except

that they occur in reverse order. By (13) and the inductive hypothesis

we obta in the remainder of the sequence k~ . 0

This argument proves Murty’s result : There are 2n_1 basis changes

when the parametr ic form of complementary pivot method I Is appl ied to

(q(n), M(n)) . It also shows that the compl ementary bases encountered

correspond to the Gray code representations of the numbers v = 0, 1 ,

~~
••,  

~~~~ . As noted by Murty, the critical val ues of the parameter

20 are of the form 2v for ‘v = 0, 1 • ,  2n_1 and the half line

of points ~(n) - z0e(n) where 0 < z0 < 2h1+I _2 passes through all

2’’ compl ementary cones.

—21 —
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Murty appl ies compl ementary pivot method II to the probl em

(—e(n), M(n))

Theorem 2. Compl ementary pivot method II applied to (—e(n), M(n))

• with M(n) as defined in (15) will generate the pivot sequence

k~(O)~ k~(1)~ ..., k~(2 n_2)

Proof. This is easily veri fied in the case where n = 2 . Now suppose

it is true for n — l > 2  . We have

-1 1 0
-e (n)  = and M(n) =

—e(n— l) 2e(n—l ) M(n—l)

By the way the method is defined , we must have z1 
= 0 (non bas ic)

until (—e(n—l), M(n—l)) is solved. By the inductive hypothesis,

this generates the pivot sequence kn_i (v) for V = 0, 1 , ... , 2~
h 1 _2

At the termination of the latter solution process we have — in terms

of the probl em (-e(n), M(n)) — the var ia bl e z2 basic and all other

z
~ 

non basic. The next variabl e to become basic is 21 , so by Propo-

sition 3 we have the pivot sequence kn (v) for 0 < v < 2’~— l . Now

with z1 and z2 basic and non basic for 3 < i < n we must

once again have to solve the probl em (—e(n—1), M(n—1)) . (We remark

that w1 will never become basic again.) By the inductive hypothesis,

thi s requires the sequence k~~1 (v) for 0 < V < 2n-l _2 Since this

sequence is a palindrome , it follows that the entire pivot sequence

for solving (—e(n), M(n)) is just kn 0

Here too we get a sequence of 2~~l pivots. Moreover, the compl e—

-22—
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mentary bases used correspond to the Gray—code representations of the

numbers 0, 1 , ... ,

4.2 Fathi ’s exampl es.

The main point of Fathi ’s paper is that there are symmetric P-

matrices (which of course, must therefore be positive definite) for

which the same computational effort is required as In the solution of

Murty’s examples by the same methods. Indeed, Fathi constructs a

special matrix out of Murty’s matrix M(n) . Before defining this

matrix , we wish to call the reader’s attention to the fact that there

are some significant notational differences between the following

development and what is to be found in Fathi ’s paper. So, to begin

with , let

= M(n)M(n) T . (21)

This matrix is obviously symmetric and positive definite. Furthermore,

it has the following suggestive structure:

1 2e(n_1)T 22F(n) =

2e(n—l) F(n—l ) + 4E(n—l)

where - -

E(n) : = e(n)e(n)T

-23—
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Fathi ’s analysis (and ours) makes use of two related matricec, n~tniely

7(n): = F(n) + 4E(n) (23)

and

Y(n): = F(n) — 4G(n) (24)

where

= [0, e(n)e(n_l)T] . (25)

We notice at once that F(n—l ) is a principal submatrix of F(n)

For reasons of simplicity, we reverse the order of the complementary

pivot methods considered and look at the solution of Fathi ’s problem

(-e(n), F(n)) by means of compl ementary pivot method II.

Examining Fathi ’s solution of (-e(3), F(3)) we see that compl e-

mentary pivot method II generates the pivot sequence k3 . One can

easily verify the analogous statement (—e(2), F(2)) . In Theorem 3

we prove thi s in general . The proof (naturallyan inductive one) makes

critical use of an observation of Fathi ’s. We state this without proof

as

Lema 1. For all n > 2 , the pivot sequences generated by compl ementary

pivot method II in the solution of (—e(n), F(n)) , (—e(n), 7(n))

and (—e(n), 7(n)) are the same.

Now we have

-24-

I

-5- -- —, ~~~~~~~~~~~ 5-. — -  — ~~~~~. ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5~~~~~~~~~~~ -~~~~~~~~~_-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I

Theorem 3. Compl ementary pivot method II appl ied to (—e(n), F(n))

will generate the pivot sequence kn(0)~ ~~~~~~~ k~(2”—2)

Proof. The statement is true for n = 2 , so assume It is true for

n - 1 > 2 . To solve (—e(n), F(n)) one must first solve the sub-

probl em (-e(n-l), 7(n—1)) before 21 can be made basic. By the

inductive hypothesis and Lemma 1 we see that the solution of

t-e(n), F(n)) by complementary pivot method II begins with 2’’~~-l
pivots given by k~ (V) for 0 < v < 2n—i _2 . The next pivot must

be the exchange of w1 and z1 . Hence we have agreement with

kn(2~~
1_1) . When this stage is reached, z1, z2, w3, .. ., ~

are basic variabl es. The corresponding tabl eau has the form

1 w1 w2 z3 
•

~~~

‘

z1 3 5 —2 2 •.. 2

z2 -1 -2 1 -2 ... —2

—l —2 2

• • ~ F(n-2)

W
w -1 -2 2

According to the rules of the method, we must solve the subprobl eni cor-

responding to the indices 2, 3, ... , n . This is easily recognized

~s (—e(n— 1), ~(n—l)) . By the inductive hypothesis and Lemma 1 , we see

that pivot sequence for this part of the problem is just the last

2~
1 1 _l terms of the sequence k~ , i.e., k~(v) for 2n— 1 < < 2n~~

After these pivots, the probl em is solved . Hence complementary pivot

—25— 
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method II appl ied to (—e(n), F(n)) generates the pivot sequence

k (v) for 0 ~~~ V < 2”-2 . 0

To obtain a computational compl exity resul t for compl ementary

pivot method I, Fathi uses the matr ix we have ca ll ed F(n) , but instead

of q(n) as defined in (15), he considers a more general class of

vectors. The central idea in this instance is to show the existence

of a line 1(n) which passes through all ~ compl ementary cones de—

fined relative to F(n)

The construction goes as follows. Let ~(n) E Rn satisfy

< 

~~~~ 
< < ~1 (n) . (26)

Note that ~(n) € m t  R~ . For purposes of the proof, it would suffice

to let ~~(n) equal 0 in (26). The desired line is

L(n): = {~ (n) — z0e(n): z0 E R} . (27)

A figure corresponding to the parametric linear compl ementarity

probl em (p(2)—z0e(2), F(2)) shows that L(2) passes through the four

compl ementary cones defined relative to F(2) . It also shows that -if

is suitably large and positive, then p(2): = ~(2) — 10e(2) l ies

in the interior of pos [—F 1, ‘2~ 
Moreover , the line segment be-

tween p (2) and ~(2) meets all four compl ementary cones relative to
F(2) . Indeed, solving the linear complementarity probl em (p(2), F(2))

by compl ementary pivot method I in parametri c form yields the pivot

sequence k2

-26-
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As in the prev iously cons idered cases , this fact points to an in—

ductive proof of the natural generalization of this observation. We

shal l not give a formal proof of the following result, but simply

remark that usIng the obviously true case of n = 2 as an inductive

hypothesis with Fathi’s own inductive proof of his Theorem 3.4 we have

Theorem 4. If p(n) E L(n) lies in the interior of the complementary

cone P05 [-F 1, 1 2, 
~~~ 

, then the parametric version of compl e-

mentary pivot method I appl ied to (p(n), F(n)) will generate the

pivot sequence k1(0), ... , k~(2n_2)

Thus, the two complementary pivot methods appl ied to the linear

compl ementarity problems set down by Murty and Fathi give rise to compl e—

mentary bases which correspond to the Gray—code representations of the

integers 0, 1 , ..., 2n 1
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5. Conditions for achieving a prescribed pivot sequence.

In thi s section, we are concerned with the relationship between

the data q and M of a linear complementarity problem and the pivot

sequence followed in the solution of (q, M) by compl ementary pivot

methods I and II.
nxn -Throughout this section we assume that M ~ R is a P—matrix.

We know then that for all q E R’’ , the probl em (q, M) has a unique
H solution [17] and either of the aforementioned methods will find it.

The “resul ts ” of this section serve two purposes. First, they

provide a brief review of two complementary pivot methods under con-

sideration here. (This may be helpful for those not already conversant

with them.) Second, and no less important, they suggest the possibility

of constructing other nasty probl ems, about which iiore will be said in

Section 6.

Both of these complementary pivot methods use an algebraic opera-

tion know as principal pivoting . In general (i.e., for M not neces-

sarily in P ), if m
~i 

$ 0 , the principal pivotal transform of M ob-

tained by pivoting on in11 is the matrix M’ with elements m~j

satisfying the rules

m’
j j  = m ~~

= _m
~~

mij j  $ 1

m’j i = m~1m~

~~~~~~~~~~~~~~~~ , j $ i  $~~.

A sal ient point in the present discussion is a resul t due to Tucker [19]

-28- 
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which states that if M E P then so is every principal pIvot; 1 trans-

form N’ . Thus the assumption that M E P guarantees that all the

indicated pivot operations are possible.

5.1 Compl ementary pivot method I (Lemke [13]).

In the present circumstances , Lemke ’s method can be put into para—

metric form as follows. Given a probl em (q., M) of order n with

q .L 0 (for nontrivlality) define the positive real number

z0 = — min q
l<I’< n

and let e = (1, ... , 1)T E Rn . Then

q: = q + z 0e > O .

(Recall what was done in the proof of Theorem 1.) To solve (q, N)

we may consider the parametric linear compl ementarity probl em

(~-z0e, M) , 0 < z~ ~ 
. (28)

For all 20 
E [0, i

~
] , the probl em (~—z0e, M) has a unique solution.

For z0 = 0 , the sol ution is obvious. What we want is the solution for

z0 
= . This can be thought of as the homotopic approach to the

probl em.

As z0 runs from 0 to , the vec tor ~ - z~e passes through
several complementary cones along the line segment from ~ to q

The critical values z~ of z0 corres pond to po ints where this line

—29—
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segment meets the boundaries of the compl ementary cones. For example,

• z~ = 0 is the largest val ue for which ~ - z0e E pos B° where

B° = I . Thus = 0 is a critical value of z0 . For any larger

value of 20 , 
— z0e belongs to a different complementary cone.

In the nondegenerate case , this cone is uniquely determined. So, under

this assumption, for the r.ritical value z~ , there will be a unique

Index k(O) suc h that

(~~~
- Zg~)~~ = 0 .  (29)

In the degenerate case, several components of ~ - z~e may vanish.

One can make the choice unique and the method finite by using a least—

index rule [3]. We shall say more about thi s later; for the moment we

retain the nondegeneracy assumption.

According to (29), the line segment from ~ to q first enters

the compl ementary cone P05 B1 where

B1 = 

~
1
~~
, 1.k(0)-1 ’ -M k(o)~ 

1.k(0)+1’ •.s, I n]

The process then continues after the system Is put Into canonical form

with respect to the compl ementary basis B1 
. Thi s corresponds to a

principal pivot on mk(Q) k(Q) . Equivalently, we take the equation

1w — Mz = - z0e

and multiply through by (B1)1 to obtain the up—dated system. We

must next determine the cr itical value 4 , that is, the largest val ue

-30-
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of z0 for which q — z0e 
E pos 131 . However , in this and all sub-

sequent stages, care must be taken to make sure that the next critical

value does not exceed 1~ . In particular If z~ <10 < , then

q E P05 BV and the process stops as soon as the eas ily found solution

of (~-10e, Il) 
= (q, H) is written down.

Suppose the solution process requires exactly £ pivots (basis

changes). This means sequences of £ + 1 compl ementary bases
0 1  1. . 0 1B , B , ..., B and critical values z0, z0, . . .,  z~ are determined

in the manner sketched above. Each basis is obtai ned from its prede-

cessor by a simpl e col umn change. For V = 0, 1 , ..., ~—l let k(v)

denote the index of the column in B’~ to be exchanged. Thus

V+l — ~ V
B.k(V) 

— 
~
1.k (V)’ 

_M
.k(V)}~

{B.k(v)}
(30)

B’~ = ~~ , j  $ k (V )  .

If we have B° = I , and we know the pivot sequence (function)

k(0), k(l), ..., k(~— l ) , then we know all the compl ementary bases

used In the process.

What we seek is the connection between the data of (q, M) and a

given pivot sequence k . The question is: When will complementary

pivot method I (in parametric form) generate a particular sequence of

pivots?

This question has an obvious answer in terms of some determinantal

inequalities. To facilitate their expression , we introduce the following

notation. Suppose A is an rnxn matrix , b is an rn—vector, and

k E {l , .. ., n} . Then

—31-
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A ( k; b): = [A 1, ... , A .k_l , b, A k+l , •.., A~~]

Is just the matrix A but with b in place of A.k . Note that if

in = n and A i s nonsingular, then by Cramer ’s rul e for sol v ing the

linear al gebra ic system Ax = b we have

Xk 
= det A(k; b)/det A , k = 1 , ..., n

Concerned as we are with compl ement~~ bases relative to [I, —N]
where M € P , it should be clear that given such a basis, B , its

determinant is positive or negative according to whether B contains

an even or odd number of columns of -M . Moreover, given B° = I

and a pivot sequence k(0), ..., k(~-1) , the complementary bases B

it generates will contain an even or odd number of columns from -M

accor d ing to whether v is even or odd. Thus

(_ l )V det BV > O , O~~~v~~~L .

We use this fact In the proof of the theorem below.

Theorem 5. If N € P , and the sol ution of (q, N) by (the parametric

form of) complementary pi vot method I generates the pi vot sequence

k(&—l ) and corresponding compl ementary bases B°, ..., Bt

then for v = 0, ...,

-32-
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(I) (~1)” det B’~(k(v); e) > 0 ;

(ii) (—1) ” det B’~(k(V); q) < 0  ;

(iii) det BV(k(V); q) rn-in ~det BV(j; g) (~l) Vdet BV(j; e) > O~
det B”(k(v); e) i<j<n I~det B”(j; e) J

and for v =~~

(iv) either

max (—1 )~det B~(j; e) < 0l<j<n

or else there exists an index k(s) for which

(— 1)~det B
9’(k(~); e) > 0 , (iii) holds for V = £ and

(— l)~det B~(k(~); q) 0 .

Conversely, if (i) - (iv) hold and for all z0 € [0, z~
j there are at

most n -+ 1 zero components in the compl ementary basic solution to

(
~ 

— z0e, M) , then the sequence of pivots must be given by the integers

k(0), ..., k(z—l )

Proof. Suppose the pivot sequence k(0), ..., k(9~—l) is generated.

Then for each v = 0, ... , £—l , the k(V)—th basic variabl e in the

v—Ui basic set of variabl es must decrease as z0 increases. To simpli—

fy the notation, let k = k(V )  , and let w~ be the k—th basic van-

abl e relative to the v—th basis B” . Then

-33- 
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= ((B”)~~(—e)) = 
det B (k; —e) 0

Z0 det B”

Since M E P , we have (-l )”det B” > 0 , the inequality (i) now follows.

Next, cons ider the calcula tion of the cr itical va l ue . The

up—dated right—hand side of the equation

H Iw - Mz~~~~- z0e

is of the form

- z0(B”)~
1 e

The cr itical value z~ makes the k-th component of the vector in

(31) equal zero. Hence for each v = 0, ... ,

- 

((B”Y1
~
)k(V) 

— 

((B”)~
1
~)~ ()~ +

— 

((B”)
~~

e) k(V) 
—

((B ) q)
~ —

((B”) e) k(V) 
0

However, for these values of v , Z~~< z 0 . The inequality (-Ii) now

follows from (I). The fact that z~ is the cr itical value for the B”

implies (iii).

When the last bas is B2 is obtained , it must be the case that

either (BL)_l (_e) > 0 in which case

-34—
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max det B~(j; e) < 0
l<j<n

and none of the var iables w~ decreases as z0 increases from ~~~
to on el se (B~Y

1 (—e) has a negative component and it is possibl e

to define a new critical value z~ > as above. In particular , there

must exist an index k(~) for which (iii) holds and

• (— l)9det B~(k(2~); q) > 0

Since (B~)~~(~ - z0e) > 0 for all z0 
€ [zr, z0] , it is not neces-

sary to execute another pivot; hence k(s) is not part of the pivot

sequence.

The proof of the converse is clear form the nondegeneracy assump-

tion. Indeed the pivot sequence is uniquely determined by the inequali-

ties (i) — (lv). 0

Remark. The necessary conditions stated in Theorem 5 are valid even

in the degenerate case, but in that situation , the statement of the

converse must be modified . If we use a least—index rule to choose the

pivot element, then (i) - (iv) are sufficient provided the k(v) are

the least Integers (indices) for which those conditions hold.

5.2 Complementary pivot method II ~Murty [15], [16]).

In [15] and [16], Murty develops variants of the so—called Bard

method* for solving (q, M) where M E P . The Bard procedure is a

• *Thjs sort of method is related to an earlier one of Zoutendijk [20,
pp. 83—90].
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type of principal pivoting method which starts with the equation (1)

and the compl ementary basis B° = I . At the v—th step, one has a

complementary basis B” and the vec tor

q”: = (B”)~~q

4
If q” > 0 , the solution has been formed. Otherwise 

~i!~ Index

k = k(v) such that q~ < 0 is chosen, a new complementary basis

is determined according to (30), and by principa l pivoting (or

up—dating) one has the new vector

v+l v+1 -lq :=(B ) q .

At this point, the steps outlined above are repeated.

It is known that in the degenerate case this arbitrary way of

selecting k(v) can lead to circling (alias cycling): the repetition

of a sequence of complementary bases. The essence of Murty’s var iant

is a specifi c rule for choosing k k(-v) which makes the method

finite. In [14], he uses the rule

k(v) = arg mm {k: q~ < 0} (32)

whereas in [16] he uses the largest—index rule

k(v) arg max {k: q~ < 0} . (33)

—36-
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Under (32) or (33) or indeed under any other specific rule , k becomes

a function of v and the data q and H

So, complementary pivot method II is Bard’s method with the largest

index pivot selection rule (33). It seems that Murty’s motivation for

using (33) rather than (32) in [16) was to exhibit the required exponen—

tial computational effort of both compl ementary pivot methods with the

same matrix. Fathi [7] also uses (33) as part of compl ementary pivot

method II.

Theorem 6. If H € P ñ R”>~ , the solution of (q, M) by complementary

pivot method II generates the pivot sequence k(0), k(l), ..., k(z—l )

and corresponding compl ementary bases B°, B1 , ..., B~ if and only if

(i) for all v = 0, 1 , ..., £—1

mm ~— 1)”det B”(k; q) < 0
1<k<n

and

k ( V )  = arg max {k: (-1 )”det B”(k; q) < 0} ;

(ii) for v~~~~

(— l)~det B
2’(k; q) > Q , k = 1 , ..., n .

Moreover, the bound 2, < 2~ — 1 is sharp.

Proof. Given a compl ementary basis B” we have

q~ = ((B”Y~q)~ = det BV(k; q)/det B
y

—37—

-

t 
________ -

—— 5- — —~~~—
5_ ~~~~~ ~~~~~~~

-—



5-

Since (—l)”det B” ‘- 0 for all complementary bases generated by comple-

mentary pivot method II, conditions (1) and (ii) are just a paraphrase

of the tests of the al gorithm. The bound £ < 2” — 1 is a consequence

of the fact that there are 2” compl ementary bases which (by Murty’s

finiteness proof) cannot be repeated in the solution process. The

sharpness of the bound is shown by Murty’s problem (—e(n), M(n)) . 0
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• 6. Some connections with other literature.

In section 4, we establ i shed the corres pondence between the numerical

examples of Murty and Fathi and the Gray code representations, g”(v) , of

the integers v 0. 1 , ..., 2r~_1 This sequence describes a hamil—

-
~~ tonian path on the unit n-code.

As may be expected, there is a sizabl e literature on Gray codes

and related matters. We mention just a little of it here. Some papers

are concerned with Gray codes in bases other than 2 and conversions

between number systems. See [4], [6], and [8]. Other papers treat the

probl em of describing paths on n—cubes . See [10], for example. The

latter are related to “snake-in-a—box ” probl ems and codes . The Intro-

duction (in Volume I) and Bibliography (in Volume II) of the book [14]

by MacWilliams and Sloane is a rich source of references on this litera-

ture. See also [2].

By far the most amusing article on the subject of Gray codes is

the one by Martin Gardner [9] who points out that the binary Gray code

F 
-Is the key to the solution of the Chinese ring puzzle and the well—

known Tower of Hanoi probl em. To these may be added a recently-mar-

keted puzzle called “The Brain.” It requires the solver to move a set

of eight rods from one extremal position (e.g., all “out”) to the other

(a ll “in”). The puzzle is constructed in such a way that at any stage,

only two of the rods will move. It takes 170 moves to solve the puzzle,

for (in the notation of Section 2)

- 

I g8(0) = (0, 0, 0, 0, 0, 0, 0, 0)

and
—39— 
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g8(l70) = (1, 1 , 1 , 1 , 1 , 1 , 1 , 1)

Remembering that the papers by Murty and Fathi are concerned with

the computational compl exity of compl ementary pivot methods and that

probl ems requ1r~ng 2’~ - 1 pivots are exhibited , one may as k whether

these have a connection with the Kl ee—Minty result [12] on the simpl ex

method of linea r programing. In their paper, Klee and Minty devise

a class of linear programs in which the feasibl e region is a specially

-
~~ perturbed unit n—cube . The objective function is just one coordinate,

and the simpl ex method with the customary pivot sel ection rul es runs

through 2” — 1 pivots in finding the solution. In so doing, it

generates a ham~1toniari path on the “cube” which can be associated in

a simpl e way with the path that arises from the Gray code. Their exam-

ple [12, p. 163] with ~ = 0 and the coordinates of the vertices written

in reverse order illustrates this point. It is not clear (to the author

at least) that a stronger link between ~.hese phenomena can be found.

For the combi natorial theorist, an appealing question is: What

“solution paths” on the unit n-cube can be realized — through the

correspondence (3) - when a linear compl ementarity probl em (q, M)

with Fl E P is solved by methods of the type discussed here?

Very recently, Stickney and Watson [18] have published a paper

focusing attention on Bard—type algorithms for the P—matrix case. For

a given probl em (q, N) they define a directed graph G(M/q) whose

vertices correspond to e’ - --pl ementary bases of [I, —M] . The graph has

a directed edge from vertex A to vertex B if there exist an index

k E {1 , ..., n) such that

-40-
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(I) (A
~~
q)k < (34)

(ii) A .k € { ~~~~~ _M
.k

} \ B
.k

(iii) A~ = B~3 , 
j $ k

Clearly, the vertices of G(M/q) correspond to those of the unit n-cube

via (3). The edges of G(M/q) being defined by the conditions (34) are

just those of the unit n-cube apart from their orientation. That is,

when M EP , the total degree of a vertex in G(M/q) is n . See

[18, p. 324].

One of the main results of the Stickney-Watson paper is that when

N EP , a linea r compl ementarity problem (q, M) with q belonging to

a compl ementary cone spanned by k columns of -M and n - k columns

of I can be solved by a sequence of k Bard-type pivots. Unfortunately,

in the general case , one still has no clue as to which Bard—type pivots

ought to be executed. Perhaps future studies will shed more light on

this. Clearly, for this insight to have practical al gorithmic val ue,

it will be necessary to identify the “right” pivots without an excessive

— 
amount of auxiliary work.

Stickney and Watson also coment on the probl em of c ircl ing in
Bard-type algorithms and about the effect of scaling in this regard.

In view of the relationship between complementary bases and vertices
of the unit n—cube , and hence between principal pivoting al gorithms

and paths on the unit n—cube, it is tempting to speculate about the

interpretation of these vertices (binary n—vectors) as encoded numbers.

In particular, can the sequence {B”} of complementary bases be chosen
in such a way that the corresponding sequence fc(Bi} of binary

—41-
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n—vectors is strictly increasing in the sense of some binary number

system? If so, this might be a way to avoid circling .
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